Cloning and characterization of lin genes responsible for the degradation of Hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90.

نویسندگان

  • Rekha Kumari
  • Sanjukta Subudhi
  • Mrutyunjay Suar
  • Gauri Dhingra
  • Vishakha Raina
  • Charu Dogra
  • Sukanya Lal
  • Jan Roelof van der Meer
  • Christof Holliger
  • Rup Lal
چکیده

Hexachlorocyclohexane (HCH) has been used extensively against agricultural pests and in public health programs for the control of mosquitoes. Commercial formulations of HCH consist of a mixture of four isomers, alpha, beta, gamma, and delta. While all these isomers pose serious environmental problems, beta-HCH is more problematic due to its longer persistence in the environment. We have studied the degradation of HCH isomers by Sphingomonas paucimobilis strain B90 and characterized the lin genes encoding enzymes from strain B90 responsible for the degradation of HCH isomers. Two nonidentical copies of the linA gene encoding HCH dehydrochlorinase, which were designated linA1 and linA2, were found in S. paucimobilis B90. The linA1 and linA2 genes could be expressed in Escherichia coli, leading to dehydrochlorination of alpha-, gamma-, and delta-HCH but not of beta-HCH, suggesting that S. paucimobilis B90 contains another pathway for the initial steps of beta-HCH degradation. The cloning and characterization of the halidohydrolase (linB), dehydrogenase (linC and linX), and reductive dechlorinase (linD) genes from S. paucimobilis B90 revealed that they share approximately 96 to 99% identical nucleotides with the corresponding genes of S. paucimobilis UT26. No evidence was found for the presence of a linE-like gene, coding for a ring cleavage dioxygenase, in strain B90. The gene structures around the linA1 and linA2 genes of strain B90, compared to those in strain UT26, are suggestive of a recombination between linA1 and linA2, which formed linA of strain UT26.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of multiple lin gene expression in Sphingomonas paucimobilis B90A in response to different hexachlorocyclohexane isomers.

Sphingomonas paucimobilis B90A is able to degrade the alpha-, beta-, gamma-, and delta-isomers of hexachlorocyclohexane (HCH). It contains the genes linA, linB, linC, linD, linE, and linR, which have been implicated in HCH degradation. In this study, dynamic expression of the lin genes was measured in chemostat-grown S. paucimobilis B90A by RNA dot blot hybridization and real-time reverse trans...

متن کامل

Cloning and characterization of linR, involved in regulation of the downstream pathway for gamma-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26.

In Sphingomonas paucimobilis UT26, LinD and LinE activities, which are responsible for the degradation of gamma-hexachlorocyclohexane, are inducibly expressed in the presence of their substrates, 2,5-dichlorohydroquinone (2,5-DCHQ) and chlorohydroquinone (CHQ). The nucleotide sequence of the 1-kb upstream region of the linE gene was determined, and an open reading frame (ORF) was found in diver...

متن کامل

Cloning and sequencing of a 2,5-dichlorohydroquinone reductive dehalogenase gene whose product is involved in degradation of gamma-hexachlorocyclohexane by Sphingomonas paucimobilis.

Sphingomonas (formerly Pseudomonas) paucimobilis UT26 utilizes gamma-hexachlorocyclohexane (gamma-HCH), a halogenated organic insecticide, as a sole carbon and energy source. In a previous study, we showed that gamma-HCH is degraded to 2,5-dichlorohydroquinone (2,5-DCHQ) (Y. Nagata, R. Ohtomo, K. Miyauchi, M. Fukuda, K. Yano, and M. Takagi, J. Bacteriol. 176:3117-3125, 1994). In the present stu...

متن کامل

Identification and characterization of genes involved in the downstream degradation pathway of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis UT26.

Sphingomonas paucimobilis UT26 utilizes gamma-hexachlorocyclohexane (gamma-HCH) as a sole source of carbon and energy. In our previous study, we cloned and characterized genes that are involved in the conversion of gamma-HCH to maleylacetate (MA) via chlorohydroquinone (CHQ) in UT26. In this study, we identified and characterized an MA reductase gene, designated linF, that is essential for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 68 12  شماره 

صفحات  -

تاریخ انتشار 2002